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This paper deals with small vibrations of thin plane wings arranged in 
tandem in plane incompressible flow. The solution is obtained by breaking 
the problem down into two simpler ones [ 1 1. One of these problems is 
nonhomogeneous and represents noncirculatory flow past a system of wings, 
whilst the second is a homogeneous problem which can be solved by means 
of functional combinations containing several constants. Thin wing theory 
is used to solve these problems [2 I. the whole investigation consisting 
essentially of finding the constants by means of linear equations. 

Closer attention is given to the problem of vibrations in a tandem 
biplane system in which one of the wings is fixed. Approximate express- 
ions are given for the hydrodynamic forces and the energy characteristics 
of the system, regarded as a moving group. 

1. Kinematic relations for vibrating planes in tandem. We 
consider a system of thin plane wings of infinite span in tandem which is 
underwing small harmonic vibrations of frequency (I in a stream of in- 
compressible fluid moving with constant velocity vo. We introduce the co- 
ordinate system Ozy (FiR.1) which moves with the undisturbed stream at 
velocity uo; then if we assume the disturbed fluid flow to be irrotational, 
the velocity potential cP(x, y, t) of the total motion satisfies the 
linearized flow conditions 

a@ - = Vnk(z)ejof 
8Y 

at akbk (k=l,. . , ,n; j=1’z) 
(I.11 

Fig. 1. 
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Roth here, and in what follows, we shall only deal with the real part 

(with respect to the imaginary number j) of complex expressions which 

involve the exponential time term. Moreover, for brevity, but without 

restricting the validity of expression (1.1) it is assumed that the 

average angle of incidence is zero. If the thin winKs vibrate as solid 

bodies the complex amplitude of the nonal velocity r,&(x) can be deter- 

mined from the expression 

Vnk (4 = Ck + (k + x) 6% (PO = -2) (1.2) 

where uk and aj are the complex amplitudes of the vertical and angular 
. 

velocities of the plate akbk. 

Assuming the disturbed vibrational motion of the fluid to be quasi- 

stationary we find 

@ (5, 21, t) = ‘p (5, y) &‘, $ = rnk (z) on ok bk (1.3) 

The harmonic function $ ( n, y) must satisfy several additional condi- 

tions. In fact, for the fluid pressure we have the linearized expression 

(pO and p are respectively the pressure and density in the undisturbed 
fluid) 

p - p. = pvo 
( 

3 - jpo~) ejaf (1.4) 

Thus from s-try considerations and the condition of continuity of 

pressure we obtain 

‘p (x7 -Y) = -9(4 Y), ‘P(X9 O)=O for z>bl 

$!!-&09=0 for y=O outside akbk (z<bJ 
(1.5) 

It follows from these conditions that, behind the wing-trailing ed=s, 

lines of discontinuity in horizontal velocity exist, representing a 

vortex sheet oriKinatinK at these trailina edws. ‘lhe solution we are 

trying to find should satisfy the condition of finite velocity at the 
trailing edges ak. 

To solve the problem we introduce the function w = 6 + i $ of the 
complex variable z = x + iy, where the imaginary number i = d-1 is not 

interchangeable with the imaginary number j. Later on we shall split the 
above problem into the two simpler problems; w(z) = we(t) + w1 (L) where 
the functions w. = q5,, + i l/lo and 70~ = J,, + i @iI satisfy conditions 

lm 2 m-z - v,,k (x) on ~66k, Rc w,, (2) = 0 outside uk b,i (1.6) 

Im zuI (5) = ilk on u,( h,, Rcwl(z)=O for r>b, 
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Re2- ) ( jpow1 -0 (for y=O outside akbk (Z<M 
(I-7) 

'Ihe function x0(z) represents the complex potential of fluid flow 
without circulatiou, while the function ~~(2) is a solution to the homo- 
Reneous problem and is linear in terms of the constants A,. It is obvious 
that the function w(z), determined from conditions (1.6) and (1.7), 
satisfies (1.3) and (1.5). 'lhe constants A, in this function must be 
found from the condition of firrite velocity at the trailing edges ok. 

UsinR thin wing theory [ 2.3 1 we find imnediatelv that 

n-2 n “k 

dwo 1 
dz- Zxig(r) k=O 

_-(r, &Z +2kzr'"';z(') &) (I.81 

g(z) = (fi tz - a,) tz - b,) j” 
s=1 

n ‘I* 

g, (z) = ((bk - z) @ - ak) n (z - a,) (z - b.)) ‘- 
r+k 

(1*9) 

?he constants Bk(k = o#l, . ..) n - 2), which are real with respect to i, 
are found by equating to zero the circulation round n - 1 sections akbk 

To determine w1 we introduce a further function 

f (2) = r+is-_ - ho WI (1.11) 

From (1.7) we have the following conditions for the function f(z): 

Im f (5) = - jplJ & on Ok b,, Ref (2) = 0 outside akbk (1.12) 

It follows from these conditions that the expansion of the function 
f(z) in the neighborhood of a point at infinity takes the following form 
(a, iS real with respect to i) 

f(z)=$+!gf.. . (1.13) 

The function f(z) is thus determined, and so is dtq,/dz. In fact, using 
the expansion (l-13), we shall have (C, is real with respect to i) 

n-1 

fcZ)=& (I:CkZ'+ 2jp0 i /&,. YE*(i)&) (1.14) 
k=O k=o 

ak 

To determine the constants C, and A, we make use of the condition of 
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finite fluid velocity at the trailing edges akP which can be written 

liln(z - al) 
z-1 

'Iz($+f)-0 (Ll,...,)L) 

Applying this condition we arrive at the system of linear equations 

n-2 n bk 

v,k (t) gk (t) 
+ ~BkQk+2xI;I\ 4__al di=O (l=Ir...,d (1.15) 

k=o 
- “k 

in which all the constants Ck are given linearly in terms of A,. To de- 

termine the latter we must satisfy the first of the conditions (1.7). 

To do this let us regard (1.11) as a differential equation in wk. Bear- 

ing in mind that at large distances in front of the planes the fluid is 

undisturbed we find 

$Q(z, 0) = ejp+i e-jpaxs(x, 0) dx (1.16) 

ac 

Making use of this expression and satisfying the first of the condi- 

tions (1.7) we have the following system of linear equations 

~~ =ejpobl [[ e-jr"axs(x, 0) dx + 2 lis(e-jfi@~ _ e--jp&) + 

Q) 8'1 

z-lb+1 

+ zl \ e--jpox~(x, 0) dx] (I=l,...,n) (1.17) 

as 

In this way, the final determination of the function w(z) consists of 

finding the constants A,, B, and C, by means of the linear equations 

(l.lO), (1.15) and (1.17). However,an analysis of transient motion of 

multiplanes in tandem [3,4 1 in the general case, with arbitrary varia- 

tion of normal velocities with time, leads us into great difficulty be- 

cause some unwieldy integral equations have to be solved. 

2. Vibrations of one wing in a tandem biplane. We now dis- 
cuss a tandem biplane, the edges of which are determined thus: - a1 = 
- a, b, = a, a2 = - c - b and b, = - c + b, where c is the abscissa of 

the center of gravity of the second wing, and 2b is the width of this 

wing. We shall now assume the second wing to be at rest (u,,(x) = O)*, 

then formulas (1.8), (l.o), and (1.14) for this case take the form 

l In all our calculations we assume c > 0, i.e. the stationary wing is 

at the rear. If the stationary wing is in front(c < 0) the following 

change should be made in the formulas, (c’ - &1/2=_ (($- 4)1/2 
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dwo 
‘dz =&(Bo+2 f vn~~:(E)d) (2.1) 

-a 

f(z) = & (c” + CIZ + 2 jpt, A1 j e di + 2jpo Aa -T rf; - di (2.2) ) 
-a -c-b 

g (2) = ((2” - d) [(z + c)” - b21)“% g, (4 = ((a” - x2) I@ + 4” - b21P 
g, (2) = -- (I x2 - u2 ) [b2 - (5 + C)2])“* 

(2.3) 

To determine the constants we have equations (1.101, (1.15) and (1.171, 

which in particular give 

a 

&I s A+2 j +g_ *F;--z 
_-. g1(4 

= v (ngl ID dE = () 

(2.4) 
-a 

a 

B~+Co-Cla-+2 s vn “:: i,” A’ g, (E) di + 2jpoA2-i+b -f$ & = 0 (2.5) 
-a -c-b 

B,+Co-Cl(c+b)+ 2 [ (Vn(i)+j~oAl)((u2-E2):=~T~)111dE- 

-c+b 

--&,A, SC 
b -(e + c) ‘II 

IE2-a2j b+E+e) di=O (2.6) 
-c-b 

la 

Al = &a 
s 

e-h= s (z, 0) dx 
cn 

(2.7) 

--e f-b 

A 2 z A, & (a+b-c) + & (b-c) 
s 

e--jpax s (x, 0) dx (2.8) 
-a 

Lst us suppose that.the stationary wing is much shorter than the 

vibrating one so that c >> b. In this case equations (2.41 - (2.8) allow 

us to find explicit approximate expressions ior the constants enter& 
these equations, if we represent the stationary winK as a concentrated 

sinmlarity. In fact, it follows from (2.1) and (2.41 that outside the 
section L c - 6, - c + b) the following expressions are valid to 
accuracy of the order of (b/c)*. 

no = _ 2 5 p, (;) (~2 ._ ;-?)‘h&, “d”p = ’ 
? p’ (C) (n? _ 5”)“’ 

3 

--n xi (;’ 
\ .” ’ 4 

- nzP -a 
--: df (2.9) 
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Expressions (2.9) represent fluid flow without circulation round an 

isolated thin vibrating winE. It therefore follows that the effect of 

the stationary wing on the noncirculatory part of the fluid flow close 

to the vibrating win,q, which gives rise to the supplementary effect of 

connected masses, is only manifest in dipole, quadripole and higher 

approximations. 

Equations (2.5) and (2.6) appear in the following simplified form with 

this degree of accuracy 

C,-&a + 2"jPoU2 (+-;SjA,=(c-a)D, (2.10) 

CO- Gc ++,c2Ar = b(O2 + G+W~oc4 + 

+ 4jp0 (3 - 2'!z)(c2 - a2)'1, AZ) (2.11) 

If follows from (2.2) that outside the section (- c - b, - c + b), to 

an accuracy of terms of order (b/c)*, the following expression prevails 

while it follows from (2.11), that the second factor in (2.13) is of 

order b/c. Thus the approximate expressions (2.9) and (2.13) correspond 

to representation of the effect of the stationary wing on the fluid flow 

close to the vibrating wing, by that of a concentrated vortex of given 

strength. 

Using expressions (2.7) and (2.13) we can obtain the following equa- 

tions to determine the constant A,: 

G HlJ2) (I*) - 2xpA, Hi(f)(p) = -ii-li,&, - C,c + x’jpnAl) (p x- potI) (2.14) 

E, c1 s ,-jv dz 
d11,7 

p+ a”)(z2_l)‘lr 9 -;icc--ia”& -=-pJ%) ( a,, = - “a) (2.15) 

Here H,(*) = I, - jlv, is a Hankel function, and from relation 

we obtain 

F _ In (cztl - (a2 -- I)“‘) 
A0 (au2 - 1fi2 

& + + ,jv 
” [ 

H,(2) (+ ” , .,) - jHl,(“) ( ;; , v)] (v 7: W) 

(2.16) 

are ex- where the functions H (*I and H (*I have been tabulated [5 1 and 
pressed in terms of H&kel functions by means of relations 

(2.15) 
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Ci 
Equations (2.10), (2.11) and (2.14) 11 a ow us to determine the constants 

and Ai to an accuracy of order (b/c)(‘). To do this, we put 

Ci = Cio + bCir, ili = Aio + bAi, (2.18) 

Then from these equations, we obtain 

c* 10 = c (El) Dl t 2who = (1 - C (PM 4 
COO = a [(a0 C (1-4) - $ (1 - C (f-43 4 

C ol= (2a0--1)C(~f+(PL0-~)(l--C(II))-- II (2.19) 

-4. b0+ $) (a0 -w0w]~ 

C 11= C(P)- 
C 

-$(a0 -1)EoT(~~] $@_j f 

2xjpdll = 
L -1 - C (EL) $ a (a0 - 1) -&J (P)] a (a*G_ 1) 

Here C(p), T(p) and G represent the fol~~in~ expressions 

C(P) = 
HJ2) (I*) 

HI(“) (EL) t wP) (IL) ' 
T(P) = 

1 

at2) (II) + iffoC2) (I.4 (2.20) 

G = D, + 2;E.j vdlo -t_ Cl0 + 4 &At0 (3 - 2,~) (ao2 - 1)1” 

For the final determination of all the constants e must find the 

value of A,,. From equation (2.8) and expressions (2.13) and (2.19) we 

find 

A2o = I -& (1 - C (p)) (1- e-jr E,) - & e--iv E, C (p)] ,!I% (2.21) 

=0 

E I= 
s 

e-_jp.r 

1 ++- Q/z’ dr, 
F -.dE’l 
‘2 dp 

(2.22) 

Note that the functions E, and E2 can be evaluated in terms of Bessel 

functions Ik(p). Actually, if we make the substitution U = x - (x2 - 1)1’2 
the expression for E, takes the following form 

El= -Icxp[j>(~+-A-j]%. (U,=a,- (ao2--l~*~~) 

Now, making use of the expansion 

cn 

cxp [$- (u + -&j] = IO (PI + &z; jk (Uk + U-k) !k h-4 
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we arrive at the following expression for E,, which is convenient for 

calculation, 

E, = -II,(p)lnU,- (2.23) 
k=l 

3. Hydrodynamic forces which act on the tandem biplane. We 
now work out the hydrodynamic forces which act on the vibrating wing in 
the tandem biplane. If we use expression (1.4) and represent the func- 

tion w in terms of wO snd f, we arrive at the following relations for 

lift and moment: 

(3.1) 

where K is the contour which bounds the section (- a,a) and is anticlock- 

wise. 

From formulas (2.91, (2.13) and (2.191 and the theorem of residues we 

find 

Y = Y, + $.Y1, M=M,+;M, (3.2) 

where YO and M,, are the lift and moment respectively corresponding to the 
vibration of an isolated wing: 

il * (I- -$)“‘I v,, (x, t) dx 

(3.3) 

and Ylb/a and M,b/a are the supplementary force and moment caused by the 

action of the stationary wing as a concentrated vortex. 

‘a, Y, = poGeJ ( c (t*) 
- - f E, 1’ (p) + (ao2 - l)-llz) 
a”- 1 

M, = pvo uG;ejol (%s + z ,zo’2 1 j - 4 E, T (p) - a0 (aoz - I)-‘1%) 
(3.4) 

To calculate the suction forces at the leading edges b,, we use the 

general formula 12 1 
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(3.5) 

Using (2.9), (2.13) and (2.19), we Ret an expression for the mean 
value of the suction at the leadinn eh z = a of the vibrating wing 

(34 

where Xl0 l is the averam suction on an isolated vibrating wing 

x1;= $I- i vn(x)d: +&(c(~)-l)D,~a 
_-D (a’ - a+) ‘2 (3.7) 

and XIz*b/a is the supplementary component in the suction expression 
caused by the stationary winR acting as a concentrated vortex. 

X,,‘=&Re G 2c,~)_~1 -f &T(p) + -!- F 
[( a0 + 1 > 1 

(3.3) 
u 

F=- s v, (4 dx 
la8 _ xa)‘la + & (C (I4 - 1) a 

To work out the s&\&m forces ac’ting on the stationary wit, we must 
start with the accurate formulas (2.1), (2.2) and (2.5) and after this 
we must transform the boundary. The result of this fives 

(3.9) 
The cmlete expression for the prqjection of the hydrodynamic forces 

on the x axis takes the form (B(t) is the angle of incidence of the 
vibrating wina) : 

T=X1+X,-Yp 
( 

p (t) = - & &at) (3.10) 

For several modes of vibration 19 > 0 and in this case a tensile 
force appears, i.e. the vibrating wing in the biplane tandem system can 
be reerded as a moving group. In this case the avera- value of useful 
and wasted power is Riven by the 

F=T*q,, IV' =-(YV+MSZ)' (V= v&t, Q = wjaf) (3.11) 

The relations obtained above allow one to work out these energy 
characteristics and the thrust efficiency q = P/P. 
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